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Key issues in image understanding in remote sensing

By J.-P. A.L. MULLER

Department qf Photogrammetry and Surveying, University College London,
Gower Street, London WC1E 6BT, U.K.

Remotely sensed images of a planet’s atmosphere, oceans and surface contain a
plethora of confusing signals about the physical nature of these phase states. His-
torically, there has been an emphasis on the semi-automated extraction of feature
classes based on the spectral properties of objects viewed within a scene and on the
use of ad hoc manual photointerpretation techniques. Although these approaches will
remain important, they are inadequate, on grounds of speed, accuracy and cost, for
the increasing demands of data-gatherers and consumers.

Research has recently begun into the automation of image- mterpretatlon tasks and
the development of parallel machines with the required processing capabilities. Three
important requirements are: (i) means to simulate the appearance of a scene,
including the interaction of electromagnetic radiation with the surface and the effects
of any intervening atmosphere; (ii) an understanding of how knowledge can be
captured and introduced at different levels in the processing hierarchy and (iii) the
application of constraints based on a knowledge of the geometry of objects in the
scene. These three aspects will be illustrated by examples from various fields,
including petroleum exploration, measurement of fluid motion and the extraction of
digital terrain elevation models.

1. INTRODUCTION

Image understanding is concerned with the recovery of physical properties of a scene from
image features and the computational systems that interpret images (see, for instance, Levine
1978; Tenenbaum et al. 1980; Marr 1982; Herman & Kanade 1986; Tailor et al. 1986).
Remote sensing involves the extraction of physical properties of fluids or solids and their
interpretation for a specific application end use, such as cartography (Doyle 1982) or clima-
tology (Bretherton 1985). Image understanding in remote sensing is defined here as the
development of techniques and computational systems for the automated extraction of scene
properties from satellite and aerial imagery for specialist domains. -

Requirements for such an automated extraction system arise from the increasing demands
of data consumers (see, for instance, Goetz et al. 1983 ; Conway & Browning, this symposium)
for more objective and quantitative information promised by a new generation of optoelectronic
and microwave digital data gatherers (see, for instance, Goetz et al. 1985). Remotely sensed
imagery is also believed to have a potential major role in spatial information systems under
current development for geographical and environmental applications (see, for instance,
Jackson, this symposium).

Automation has long played a role in the processing of satellite imagery (see, for instance,
Jones & Colombeski 1981). However, the tendency has been to restrict automation to either
preprocessing tasks, requiring a minimum of knowledge external to the image (e.g. associated
telemetry-based estimates of the satellite position), or to crude attempts to force correspondence
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between image patterns (e.g. cloud-tracking with pairs of geolocated geostationary satellite
images: see, for instance, Morgan 1979). The degree of automation has frequently been a
function of the perceived needs for volatile operational products and the efficiency of machine
processing compared with human manual intervention. Examples include the production of
cloud images for weather forecasting and, in the field of Earth resources, the use of Landsat data
in the LAcIE system for wheat-harvest monitoring and forecasting (NASA 1979).

The LACIE system is a prime example for a new trend in remote sensing, that of trying to
create a combined information processing system, based upon a desire to understand physical
processes. It included some degree of automation in the production of wheat-field coverage
from classified images (by using manually selected training sets in the original multispectral
images) and the application of knowledge external to the image (for instance, contemporary
weather data) to predict harvest yield. This system was criticized for the lack of site-specific
information (Swain 1985) but was the first major application of remote sensing applied to earth
resources that used computer analysis for very large areas.

2. LIMITATIONS OF CURRENT TEGHNIQUES

Current practice in geographical applications of remote sensing still relies heavily on the use
and further development of statistical procedures (e.g. supervised or unsupervised classification
of multispectral data) to try to extract information on surface cover based upon an attempt to
separate ground-cover types by their spectral signature, even though there have been strong
arguments advanced against its continued use (see, for example, Tenenbaum et al. 1980 ; Gerstl
& Simmer 1986). ‘

It is now widely recognized that multispectral classification has a number of severe short-
comings (Swain 1985); these include the following.

Signature extension. There is difficulty in extrapolating local spectral characteristics to larger
geographic areas; this is both a sampling problem and a fundamental limitation in the use of
laboratory spectral data in the field. '

Mixture pixels. Every satellite-image pixel is likely to have more than one ground-cover type
within the pixel’s field of view.

Signature confusion. The atmosphere and the surface slope (see §3.3.) contribute part of the
radiance recorded in every pixel.

Signature ambiguity. Owing to technological constraints (see Goetz et al. 1985) spectral
bandpasses of sensor channels are frequently too broad to differentiate between ground-cover
types (see Bernstein (1986) for a justification of Landsat Thematic Mapper band selection and
Gerstl & Simmer (1986) for a critique of the severe limitations of relying on spectral signature
for vegetation type discrimination).

Temporal instability. Multitemporal classified satellite imagery is both a function of signature
confusion (namely the atmospheric conditions change over time) and the observation that
spectral signatures for many ground cover types (namely vegetation) change over the time
period between satellite overflights.

The difficulties of correcting for geometrical instabilities of aircraft have severely restricted the
operational application of digital sensor technology to environmental monitoring. However,
the use of aerial photographic data, begun in 1859 with Gaspard Tournachon’s balloon-based
observations, has continued unabated until now. Photogrammetric techniques (see, for in-
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stance, Slama 1980) have been developed to correct for geometrical distortions associated with
aerial photography, permitting manual stereo measurements of plan and elevation to be made
with accuracies greater than 1 part in 10000 of flying height (Slama 1980). However, although
computer assistance is now given in analytical plotters to permit online computation of
geometry, little if any automation has been introduced into either the manual stereo
measurement or the manual photointerpretation process. A notable exception for the latter is
the combined use of map-derived data with digitized photographs (given a good camera
model) in automated aerial image interpretation (see McKeown et al. 1985). However, this
process still relies on the manual determination of the camera geometry.

Given this context, this paper attempts to present a radically different approach based on
recent advances in machine vision. We address the question of what the key components of an
image-understanding system are and report on recent results to develop these components using
advances in computer graphical techniques, data structures and parallel processing technology.

3. KEY COMPONENTS
3.1. System architecture

A simplified diagram is shown in figure 1 of the k‘cy components of a hypothetical image-
understanding system in remote sensing. Missing from this diagram are explicit indications of
the possible data flows and the invocation of (implicit) knowledge sources (see later).

Data-driven A

‘ Preprocessing ,

_Intensity or
Range image

Intrinsic image Image
calculation segmentation

Depth Lines
Rellectance Regions
Motion Spatial relations

Scene data
structures
E)bjecl,scene. event recogniﬁon]
expectations

guide processing

k)

. Ficure 1. Key components of an image-understanding system for remote sensing. Such a system can be developed
either for bottom-up control or the use of expectations to guide processing. Crucial features of such systems are
the incorporation of three-dimensional information and the attempt to include knowledge about the image
formation process. :
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There are two basic modes of operation of the system, commonly referred to as bottom-up
or data-driven (i.e. from the sensed data to a scene description) and top-down or expectations-
guide-processing (i.e. search for a specific instantiation of a physical object(s) in the sensed
data).

Computer vision research (referred to as ‘high-level’ vision, see Havens & Mackworth
(1983)) is usually concerned with top-down processing (Binford 1982). It can also be applied
to aerial imagery to search for specific instances of, for example, houses in a suburban estate
(see Nagoa & Matsuyama 1980; Matsuyama 1987) or in satellite imagery to monitor or track
specific natural or anthropogenic features pre-extracted from maps, given a good camera
model (see Tenenbaum et al. 1979).

Pattern recognition or image analysis research (referred to as ‘low-level’ vision, see Havens
& Mackworth 1983) has usually been concerned with bottom-up processing such as line
extraction (see Brown et al. (1983) for an example of a specialized feature detector known as a
Hough transform) or region extraction (see Cross & Mason (1985) for an example of split-and-
merge tactics) for later matching with a model pattern.

Whichever data or control flow is implemented, the most significant feature of image-
understanding research is the inclusion of three-dimensional information based on the realiz-
ation that it not only affects aerial photography (Herman & Kanade 1986) but, with increasing
spatial resolution for satellite sensors, even orthographically projected Landsat images (see
Justice et al. 1981; Woodham & Lee 1985s).

Intrinsic image calculation refers to the extraction of depth, both relative (see, for instance,
the ‘shape-from’ methods of Horn 1977) and absolute ; the subsequent extraction of reflectance,
an invariant physical quantity (to illumination and viewing conditions, see § 3.3) by using depth
and slope and, for a temporal sequence, motion estimates (for fluids, see §2) or change detection
(see Tenenbaum et al. 1979). The resultant intrinsic images can then be segmented with a
series of low-level operators to recover edges, regions and their spatial relations.

Three-dimensional analysis refers to the matching of features extracted from a combination
of intensity and processed intrinsic-image features with instantiations of features extracted
from the object and/or scene database. The former features will usually be referred to surface-
based measurements and the latter will tend to be volume-based data. The objective of the
scene data structures is therefore to convert volume representations to surface ones before 3D
analysis. This may be accomplished by the incorporation of surface boundary information
directly in volume representation schemes (see Chien & Aggarwal 1986).

Examples of this 3D analysis include map-image registration for the absolute orientation of
SPO T data (Chevrel et al. 1981) with ground control points automatically extracted from digital
map data (see Muller ¢t al. 1987) and the quality assessment of digital elevation models (DEMs)
derived from overlapping SPOT images (see Muller & Day 1987) with either manual
photogrammetric measurements of geomorphometric features (e.g. ridges, stream networks) or
DEMs derived from interpolated contours.

In the next three sections, examples are given of the recent development of some of these key
components; in each, the role of knowledge sources and its multilevel invocation
are shown. ' '

3.2. Knowledge sources and encapsulation

These sources will include models of the image formation process; geom(;tribal characteristics

of objects within the scene and their interrelations (see Havens & Mackworth 1983) ; reflectance
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characteristics of objects within a scene (see, for example, the DMA (U.S. Defence Mapping
Agency) culture file description in Schachter 1980) and specialist expertise. This last source
can be simplistically considered as consisting of two main types (see Reid e¢f al. 1985):
engineering models (e.g. of how oil is formed) and experiential ‘rules of thumb’ which can be
readily combined into a set of rules for an expert system (e.g. applied to mineral prospecting,
see Reid et al. 1985).

Knowledge encapsulation is still the most time-consuming and error-prone part of any
image-understanding system. For example, digitization of paper maps, although automated for
certain stages of the mapping process, is still very time-consuming and expensive (see discussion
in Dowman & Muller 1986). Similarly, conversion of specialist knowledge into machine-
readable rules is fraught with difficulties. For spatial information, attempts must be made to
preserve the original accuracy of the data. Appropriate data structures to enable the
integration of these multiscale data-sets are currently needed (see Jackson, this symposium).

An example of knowledge encapsulation studied here is raster to vector conversion, which
may be required for the automated interpretation of satellite images of the oceans. Current
semi-automated approaches rely upon use of the satellite orbital information and manual
intervention to locate three or more ground control features (see Ho & Assem 1986). In the
approach adopted here, automated edge detection is used to try to extract the coastline based

Ficure 2. Example of automated coastline detection. The upper left figure shows the original daytime NOAA AvHRR
image, with the upper right the application of edge detection using a Sobel filter. The lower left shows the
application of a texture segmentation based on histogram thresholding of bimodal distributions of standard
deviation of intensity within small window areas. The lower right shows the result of this edge-detection after
the combination of the other two processes and erosion and dilation.
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on gradients and differences in texture between the land, clouds and the sea. The target edge
pixels are then connected by an iterative scheme of erosion and dilation (see Preston & Duff
1984). Figure 2 shows the results for a daytime NOAA AVHRR image of the Straits of
Gibraltar.

Given a single successful segmentation, it was decided to apply this technique to several
successive day and night images. Figure 3 shows the result compared with a digitized map of
the area, which shows that the technique is quite robust for daytime images only. Hence,
coastline detection must also rely on finding a unique set of correspondences between a

38
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Ficure 3. Example of the application of this coastline-detection technique to four sequential satellite images. The
upper portion shows a digitized coastline supplied by NERC, and the lower portion shows the effect of
applying this to two daytime and two night-time (upper right, lower left) images.
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‘perfect’ model and noisy data. Fortunately, recent advances in dynamic programming (see
Maitre & Wu 1986) indicate encouraging results in this area.

This example illustrates that several different types of knowledge source and encapsulation
may need to be incorporated in automated processing, namely: platform and sensor models;
digitized maps; distance metrics as cost function for the dynamic programming; physics
(clouds are colder than land); and heuristics (sea is less textured than land).

3.3. Models for image formation

Figure 4 indicates schematically the primary sources of radiation received by a passive sensor
onboard a satellite, ignoring the strong effects associated with the bidirectional viewing and
illumination geometry (see Gerstl & Simmer 1986). It shows that to invert the signal received
at the satellite to extract meaningful information on the reflectance properties of the surface
cover will to a large extent depend on the relation between geometry and radiometry.
Determining whether topography or surface cover dominates the signal received is one of the
key issues in this area.

Sun

sensor

L

target —|[— path
radiance radiance
sky —H

radiance

7

scatts

z

atmospheric
ng i

adjacent
target

target

FicURE 4. Some of the scattering processes involved in passive remote sensing at visible and near-infrared
wavelengths (after Woodham & Lee 1985).

The techniques for modelling the effects of all the physical processes involved in scattering
incident sunlight into a satellite sensor have recently been tackled with the advent of
supercomputer-based simulation techniques. However, the atmospheric component can still be
considered as intractable given the limited information available on the local distribution of
water vapour and aerosol scatterers (see Pearce 1986 for an attempt to address this question
by using mean climate data). Currently, only empirical methods can be used to assess the
atmospheric components (path and sky radiance) of the signal (see Teillet 1986) in an attempt
to remove their influence.

A simple shading model assuming lambertian reflectance can be applied to model the
dominant effects of the surface shape (see Horn & Bachman 1978). Ray-tracing (see Fujimoto
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et al. 1986) can then be used to investigate the effects of multiple scattering and variations in
surface reflectance. Figure 5 shows an example of applying a simplified variant of ray tracing
to a digital elevation model (DEM) by using just the first ray intersection to model cast and self
shadows. The resultant areas which are in cast shadow can then be used in various schemes (see
Teillet 1986) to estimate the effects of atmospheric scattering automatically. Surface
geometries, such as tree canopies, may also be simulated by either image models (see Luttrell
& Oliver, this symposium) or full stochastic models to allow ray scattering to stimulate surface
bi-directional reflectance distribution functions (see Cabral et al. 1987).

Ficure 5. The generation of synthetic images for atmospheric correction is illustrated here. The upper left figure
shows a small portion of a SPOT image (copyright, CNES) of 10 m resolution. The upper right shows an
intensity range image of the DEM (corresponding digital elevation model); the lower left shows the simulation
of the SPOT image with cast shadows included. The lower right shows those portions detected automatically
which are in cast shadow that can be used for the correction of atmospheric effects.

These simulations of satellite images can also be used to develop better feature detectors, able
to discriminate between effects due to relief and those due to variations in surface cover. Figure 6
~ shows an example of a comparison of the application of a zero-crossing filter to an original
image (processed to ‘remove’ relief) with the cast shadow model. Developments of this kind
may lead to a revolution in the way image processing operators can be developed, by simulating
the known physics of the image formation before applying some appropriate heuristics.
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Ficure 6. Application of synthetic image to the development of machine vision components. The upper left figure
shows a Landsat band 7 image ; the upper right shows a band ratio (band 3: band 4) which tries to suppress effects
of topography. The lower left figure is the same as the lower left in figure 5. Finally, the lower right figure shows
the edges extracted from the synthetic image (in white) and those from the band ratio (in black).

This example again shows that several different types of knowledge need to be incorporated
in automated processing, namely: platform and sensor models; digitized map data (from DEM
creation) ; physics of image formation.

This technique is currently being tested for its routine application to satellite image pro-
cessing when trying to detect oil and gas seepage-related events in surface reflectance (see Rock
1984) and for aiding geologists in their understanding of landscape processes in difficult terrain
(see figure 7).

3.4. Knowledge invocation .

Classical image understanding systems generally only try to introduce knowledge at high
levels (e.g. object models, spatial relations between objects, see Besl & Jain (1985)) although
there have been some recent attempts to introduce knowledge at low levels also (see Nazif &
Levine 1984). :

Little work, however, appears to have been done on trying to introduce knowledge at
different levels explicitly. We will take two-examples of our work: automated fluid motion
measurement and automated stereo matching.
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Ficure 7. Perspective view of the area (Montagne Sainte Victoire in the South of France) with a SPOT image
(upper) and a synthetic image, including cast shadow (lower) used to modulate the image intensity. Visu-
alizations such as these may considerably aid the manual interpretation of areas by geologists.

Time sequences of satellite images have frequently been used to provide a visual impression
of complex fluid dynamical processes. However, only crude techniques of cross correlation have
so far been applied to meteorological (see Morgan 1979) or oceanographic (see Emery et al.
1986) satellite images.

Optical flow (see Horn & Schunck 1981) can be used for motion detection, although its
original application was rigid-body motion. If « and v are the translational components of
velocity, I the local image intensity and ¢, time,

ul,+vl,+1,=0. (1)

Horn & Schunck present techniques for solving (1). A substantial modification that I introduced
was to estimate a pixel velocity field by using cross correlation first (see figure 8 for the results)
and use these estimates as initialization parameters for the Gauss—Seidel iterative solution.
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Ficure 8. Example of optical flow applied to NOAA-avHRR images. The upper figures show a daytime and night-
time image; the lower right shows the velocities extracted automatically, averaged for 32-pixel windows. This
type of eulerian velocity is directly compatable for immediate inclusion in numerical simulation. The lower left
figure shows an attempt to verify the quality of the output by using the velocities to distort the second image
with respect to the first, the resultant being a difference image, indicative of where the technique may be
failing. ’

Equation (1) should be compared with a simple two-dimensional tracer conservation

equation (see Stow 1985)
uC,+vC,—C, = 0. (2)

This similarity in the form of the equations may be used to introduce a process model into the
image understanding system, subject to the physical constraints: for optical flow the pixel
motion fields must be locally smooth; for tracer conservation, there must be no sources and
sinks; and the intensity fields are representative of a conservative passive tracer (in this case,
sea-surface temperature). This technique has been successfully applied to time sequences of
satellite images of Jupiter from the Voyager spacecraft (see Muller 1982), and water-vapour
images taken by Meteosat.

The second example concerns the automation of the extraction of three-dimensional
coordinate information from the SPOT (see Muller et al. 1988), satellite, being performed
within Alvey-funded project MMI /137 on Real-time 2.5D vision systems.

Figure 9 shows a schematic of the processing steps involved in extracting surface measure-
ments of terrain (2.5D descriptions) automatically from overlapping SPO T images. Inspection
of this figure shows a plethora of knowledge sources required: satellite ephemeris (platform
parameters in figure 9), digital maps for ground control features (Gcr in figure 9) used for

30 [ 95 ] Vol. 324. A
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Ficure 9. Flow-line model of automated stereo matching system for the automated generation of
pEMs from SPOT images.

determining both the elements of exterior orientation and for validation that DEMs meet the
target quality criteria; feature extractors optimized for SPOT topographic images and cost
functions used for feature-based matching. The system is currently being implemented on a
flexible parallel array of transputers (see figure 10) to enable processing of selected windows at
video refresh rates.

4. CONCLUSIONS

In this paper, I have tried to indicate the reasons why a new approach to remote sensing is
required if we are going to be able to process the flood of data promised by a new generation
of satellite sensors (see Goetz ef al. 1985) into meaningful information that can be incorporated
into Geographical Information Systems (see Jackson, this symposium).

The complexity and difficulty of this task cannot be overstated, but current advances in
image understanding research indicate which directions appear to be promising. A new era in
remote sensing is dawning when quantitative analysis, based on image simulation, will be used
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Ficure 10. Schematic diagram of a transputer array being used at RSRE Malvern in developing a real-time 2.5D
vision system for automatically extending pEms from SPOT images.

to extract the information content automatically from satellite images in an analogous fashion
to the interplay between theory and empiricism which has led to the successful development
of numerical weather prediction.
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MMI1/137 (Real-time 2.5D vision systems (Participants: University College London (Depart-
ments of Photogrammetry and Surveying, and Computer Science); Thorn EMI Central
Research Laboratories; Laser-Scan Laboratories, Cambridge; RSRE Malvern)); by BP
Petroleum Development Limited and by the kind assistance of IBM UK Scientific Centre
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Discussion

J. C. Scort (A.R.E., Portland, Dorset, U.K.). In the context of the data continuously available
to the human being from his senses, the 2%, quoted as processed from some satellites actually
seems quite high. It is important to separate the customers and users of remote sensing into
categories : those who need continuous global coverage at one end of the scale, and those needing
occasional small regions at the other; immediacy of data is another factor. Would Dr Muller
comment on how these factors affects the division between human interaction and automation?

J.-P. A. L. MuLLER. In the short term, human interaction will continue to play a key role in
data analysis, even when guided by automated processing. An example of this that I showed
was the visualization of terrain that could incorporate automatically generated DEMs.

In the longer term, human interaction will be involved in quality control of the output of
an image-understanding system, both as it reaches intermediate conclusions and for final
results.

S. QUEGAN (Department of Applied and Computational Mathematics, The University, Sheffield, U.K.).
From the various examples quoted, can Dr Muller recognize any common elements, or does
each problem have to be treated entirely in its own right?

J.-P. A. L. MuLLER. Common elements consist of the role of image-formation models, the
multilevel invocation of multifarious knowledge sources and the matching processes needed for
object—scene recognition. However, the type, quantity and quality of each knowledge source
and when and where it is invoked is specific to a specialist domain application.
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'IGURE 2. Example of automated coastline detection. The upper left figure shows the original daytime NOAA AVHRR
image, with the upper right the application of edge detection using a Sobel filter. The lower left shows the
application of a texture segmentation based on histogram thresholding of bimodal distributions of standard
deviation of intensity within small window areas. The lower right shows the result of this edge-detection after
the combination of the other two processes and erosion and dilation.
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IGURE 5. The generation of synthetic images for atmospheric correction 1s illustrated here. The upper left higure
shows a small portion of a SPOT image (copyright, CNES) of 10 m resolution. 'The upper right shows an
intensity range image of the pEm (corresponding digital elevation model) ; the lower left shows the simulation
of the SPOT image with cast shadows included. The lower right shows those portions detected automatically
which are in cast shadow that can be used for the correction of atmospheric effects.
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'IGURE 6. Application of synthetic image to the development of machine vision components. The upper left figure
shows a Landsat band 7 image ; the upper right shows a band ratio (band 3: band 4) which tries to suppress effects
of topography. The lower left figure is the same as the lower left in figure 5. Finally, the lower right figure shows
the edges extracted from the synthetic image (in white) and those from the band ratio (in black).
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IGURE 7. Perspective view of the area (Montagne Sainte Victoire in the South of France) with a SPOT 1mage
(upper) and a synthetic 1image, including cast shadow (lower) used to modulate the image intensity. Visu-
alizations such as these may considerably aid the manual interpretation of areas by geologists.

PHILOSOPHICAL
TRANSACTIONS



http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY 4

Downloaded'f;
L

GURE 8. Example of optical flow applied to NOAA-AVHRR images. The upper figures show a daytime and nmight-
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time image ; the lower right shows the velocities extracted automatically, averaged for 32-pixel windows. This
type of eulerian velocity is directly compatable for immediate inclusion in numerical simulation. The lower left
figure shows an attempt to verify the quality of the output by using the velocities to distort the second 1image
with respect to the first, the resultant being a difference image, indicative of where the technique may be
failing.


http://rsta.royalsocietypublishing.org/

